These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fractional diffusion modeling of ion channel gating.
    Author: Goychuk I, Hänggi P.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051915. PubMed ID: 15600664.
    Abstract:
    An anomalous diffusion model for ion channel gating is put forward. This scheme is able to describe nonexponential, power-law-like distributions of residence time intervals in several types of ion channels. Our method presents a generalization of the discrete diffusion model by Millhauser, Salpeter, and Oswald [Proc. Natl. Acad. Sci. U.S.A. 85, 1503 (1988)] to the case of a continuous, anomalous slow conformational diffusion. The corresponding generalization is derived from a continuous-time random walk composed of nearest-neighbor jumps which in the scaling limit results in a fractional diffusion equation. The studied model contains three parameters only: the mean residence time, a characteristic time of conformational diffusion, and the index of subdiffusion. A tractable analytical expression for the characteristic function of the residence time distribution is obtained. In the limiting case of normal diffusion, our prior findings [Proc. Natl. Acad. Sci. U.S.A. 99, 3552 (2002)] are reproduced. Depending on the chosen parameters, the fractional diffusion model exhibits a very rich behavior of the residence time distribution with different characteristic time regimes. Moreover, the corresponding autocorrelation function of conductance fluctuations displays nontrivial power law features. Our theoretical model is in good agreement with experimental data for large conductance potassium ion channels.
    [Abstract] [Full Text] [Related] [New Search]