These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Organization of interlaminar interactions in the rat superior colliculus. Author: Saito Y, Isa T. Journal: J Neurophysiol; 2005 May; 93(5):2898-907. PubMed ID: 15601732. Abstract: Our previous studies have shown that when slices of the rat superior colliculus (SC) are exposed to a solution containing 10 microM bicuculline and a low concentration of Mg2+ (0.1 mM), most neurons in the intermediate gray layer (stratum griseum intermediale; SGI), wide-field vertical (WFV) cells in the optic layer (stratum opticum; SO), and a minor population of neurons in the superficial gray layer (stratum griseum superficiale; SGS) exhibit spontaneous depolarization and burst firing, which are synchronous among adjacent neurons. These spontaneous and synchronous depolarizations were thought to share common mechanisms with presaccadic burst activity in SGI neurons. In the present study, we explored the site responsible for generation of synchronous depolarization of SGI neurons by performing dual whole cell recordings under different slice conditions. A pair of SGI neurons recorded in a small rectangular piece of the SGI punched out from the SC slice showed synchronous depolarization but far less frequently than those recorded in a small rectangular piece including SGS and SO. This suggests that the superficial layers are needed for triggering synchronous depolarization in the SGI. Furthermore, we recorded spontaneous depolarizations in pairs of neurons belonging to the different layers. Analysis of their synchronicity revealed that WFV cells in the SO exhibit synchronous depolarizations with both SGS and SGI neurons, and the onset of spontaneous depolarization in WFV cells precedes those of neurons in other layers. Further, when SGS and SGI neurons exhibit synchronous depolarizations, SGI neurons usually precede the SGS neurons. These observations give further evidence to the existence of interlaminar interaction between superficial and deeper layers of the SC. In addition, it is suggested that WFV cells can trigger burst activity in other layers of the SC and that there is an excitatory signal transmission from the deeper layers to the superficial layers.[Abstract] [Full Text] [Related] [New Search]