These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of dipeptidyl peptidase-4 augments insulin secretion in response to exogenously administered glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, pituitary adenylate cyclase-activating polypeptide, and gastrin-releasing peptide in mice.
    Author: Ahrén B, Hughes TE.
    Journal: Endocrinology; 2005 Apr; 146(4):2055-9. PubMed ID: 15604213.
    Abstract:
    Inhibition of dipeptidyl peptidase-4 (DPP-4) is currently being explored as a new approach to the treatment of type 2 diabetes. This concept has emerged from the powerful and rapid action of the enzyme to inactivate glucagon-like peptide-1 (GLP-1). However, other bioactive peptides with potential influence of islet function are also substrates of DPP-4. Whether this inactivation may add to the beneficial effects of DPP-4 inhibition is not known. In this study, we explored whether DPP-4 inhibition by valine-pyrrolidide (val-pyr; 100 micromol/kg administered through gastric gavage at t = -30 min) affects the insulin and glucose responses to iv glucose (1 g/kg) together with GLP-1 (10 nmol/kg), glucose-dependent insulinotropic polypeptide (GIP; 10 nmol/kg), pituitary adenylate cyclase-activating polypeptide 38 (PACAP38; 1.3 nmol/kg), or gastrin-releasing peptide (GRP; 20 nmol/kg) given at t = 0 in anesthetized C57BL/6J mice. It was found that the acute (1-5 min) insulin response to GLP-1 was augmented by val-pyr by 80% (4.2 +/- 0.4 vs. 7.6 +/- 0.8 nmol/liter), that to GIP by 40% (2.7 +/- 0.3 vs. 3.8 +/- 0.4 nmol/liter), that to PACAP38 by 75% (4.6 +/- 0.5 vs. 8.1 +/- 0.6 nmol/liter), and that to GRP by 25% (1.8 +/- 0.2 vs. 2.3 +/- 0.3 nmol/liter; all P < 0.05 or less). This was associated with enhanced glucose elimination rate after GLP-1 [glucose elimination constant (K(G)) 2.1 +/- 0.2 vs. 3.1 +/- 0.3%/min] and PACAP38 (2.1 +/- 0.3 vs. 3.2 +/- 0.3%/min; both P < 0.01), but not after GIP or GRP. The augmented insulin response to GRP by val-pyr was prevented by the GLP-1 receptor antagonist, exendin(3) (9-39), raising the possibility that GRP effects may occur secondary to stimulation of GLP-1 secretion. We conclude that DPP-4 inhibition augments the insulin response not only to GLP-1 but also to GIP, PACAP38, and GRP.
    [Abstract] [Full Text] [Related] [New Search]