These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Direct visualization of the structure of the "20 S" aggregate of coat protein of tobacco mosaic virus. The "disk" is the major structure at pH 7.0 and the Proto-helix at lower pH. Author: Butler PJ, Bloomer AC, Finch JT. Journal: J Mol Biol; 1992 Mar 20; 224(2):381-94. PubMed ID: 1560458. Abstract: We have employed the rapid-freeze technique to prepare specimens for electron microscopy of a coat protein solution of tobacco mosaic virus at equilibrium at pH 7.0 and 6.8, ionic strength 0.1 M and 20 degrees C. The former are the conditions for the most rapid assembly of the virus from its isolated protein and RNA. At both pH values, the equilibrium mixture contains approximately 80% of a "20 S" aggregate and 20% of a "4 S" aggregate (the so-called A-protein). The specimens were prepared either totally unstained or positively stained with methyl mercury nitrate, which binds to an amino acid residue (Cys27) internally located within the subunit, which we show not to affect the virus assembly. The images in the electron microscope are compatible only with the major structure for the "20 S" aggregate at pH 7.0 containing two rings of subunits and these aggregates display the same binding contacts as those seen between the aggregate that forms the asymmetric unit in the crystal, which has been shown by X-ray crystallography to be a disk containing two rings, each of 17 subunits, oriented in the same direction. In contrast, the images from specimens prepared at pH 6.8 show the major structure to be a proto-helix at this slightly lower pH, demonstrating that the technique of cryo-electron microscopy is capable of distinguishing between these aggregates of tobacco mosaic virus coat protein. The main structure in solution at pH 7.0 must therefore be very similar to that in the crystal, although slight differences could occur and there are probably other, minor, components in a mixture of species sedimenting around 20 S under these conditions. The equilibrium between aggregates is extremely sensitive to conditions, with a drop of 0.2 pH unit tipping the disk to proto-helix ratio from approximately 10:1 at pH 7.0 to 1:10 at pH 6.8. This direct determination of the structure of the "20 S" aggregate in solution, under conditions for virus assembly, contradicts some recent speculation that it must be helical, and establishes that, at pH 7.0, it is in fact predominantly a two-layer disk as it had been modelled before.[Abstract] [Full Text] [Related] [New Search]