These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cholecystokinin inhibits evoked inhibitory postsynaptic currents in the rat nucleus accumbens indirectly through gamma-aminobutyric acid and gamma-aminobutyric acid type B receptors.
    Author: Kombian SB, Ananthalakshmi KV, Parvathy SS, Matowe WC.
    Journal: J Neurosci Res; 2005 Feb 01; 79(3):412-20. PubMed ID: 15605383.
    Abstract:
    We recently reported that cholecystokinin (CCK) excited nucleus accumbens (NAc) cells and depressed excitatory synaptic transmission indirectly through gamma-aminobutyric acid (GABA), acting on presynaptic GABAB receptors (Kombian et al. [2004] J. Physiol. 555:71-84). The present study tested the hypothesis that CCK modulates inhibitory synaptic transmission in the NAc. Using in vitro forebrain slices containing the NAc and whole-cell patch recording, we examined the effects of CCK on evoked inhibitory postsynaptic currents (IPSCs) recorded at a holding potential of -80 mV throughout CCK-8S caused a reversible inward current accompanied by a concentration-dependent decrease in evoked IPSC amplitude. Maximum IPSC depression was approximately 25% at 10 microM, with an estimated EC50 of 0.1 microM. At 1 microM, CCK-8S induced an inward current of 28.3 +/- 4.8 pA (n=6) accompanied by an IPSC depression of -18.8% +/- 1.6% (n=6). This CCK-induced IPSC depression was blocked by pretreatment with proglumide (100 microM; -3.7% +/- 6.9%; n=4) and by LY225910 (100 nM), a selective CCKB receptor antagonist (4.4% +/- 2.6%; n=4). It was not blocked by SCH23390 (10 microM; -23.5% +/- 1.3%; P < 0.05; n=7) or sulpiride (10 microM; -21.8% +/- 5.1%; P <0.05; n=4), dopamine receptor antagonists. By contrast, it was blocked by CGP55845 (1 microM; -0.4% +/- 3.4%; n=5) a potent GABAB receptor antagonist, and by forskolin (50 microM; 9.9% +/- 5.2%; n=4), an adenylyl cyclase activator, and H-89 (1 microM; 6.9% +/- 3.9%; n=4), a protein kinase A (PKA) inhibitor. These results indicate that CCK acts on CCKB receptors to increase extracellular levels of GABA, which then acts on GABAB receptors to decrease IPSC amplitude.
    [Abstract] [Full Text] [Related] [New Search]