These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dehydroepiandrosterone inhibits the amplification of glucocorticoid action in adipose tissue. Author: Apostolova G, Schweizer RA, Balazs Z, Kostadinova RM, Odermatt A. Journal: Am J Physiol Endocrinol Metab; 2005 May; 288(5):E957-64. PubMed ID: 15613680. Abstract: Dehydroepiandrosterone (DHEA) exerts beneficial effects on blood glucose levels and insulin sensitivity in obese rodents and humans, resembling the effects of peroxisome proliferator-activated receptor-gamma (PPARgamma) ligands and opposing those of glucocorticoids; however, the underlying mechanisms remain unclear. Glucocorticoids are reactivated locally by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), which is currently considered as a promising target for the treatment of obesity and diabetes. Using differentiated 3T3-L1 adipocytes, we show that DHEA causes downregulation of 11beta-HSD1 and dose-dependent reduction of its oxoreductase activity. The effects of DHEA were comparable with those of the PPARgamma agonist rosiglitazone but not additive. Furthermore, DHEA reduced the expression of hexose-6-phosphate dehydrogenase, which stimulates the oxoreductase activity of 11beta-HSD1. These findings were confirmed in white adipose tissue and in liver from DHEA-treated C57BL/6J mice. Analysis of the transcription factors involved in the DHEA-dependent regulation of 11beta-HSD1 expression revealed a switch in CCAAT/enhancer-binding protein (C/EBP) expression. C/EBPalpha, a potent activator of 11beta-HSD1 gene transcription, was downregulated in 3T3-L1 adipocytes and in liver and adipose tissue of DHEA-treated mice, whereas C/EBPbeta and C/EBPdelta, attenuating the effect of C/EBPalpha, were unchanged or elevated. Our results further suggest a protective effect of DHEA on adipose tissue by upregulating PPARalpha and downregulating leptin, thereby contributing to the reduced expression of 11beta-HSD1. In summary, we provide evidence that some of the anti-diabetic effects of DHEA may be caused through inhibition of the local amplification of glucocorticoids by 11beta-HSD1 in adipose tissue.[Abstract] [Full Text] [Related] [New Search]