These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Developmental dimorphism: consequences for larval behavior and dispersal potential in a marine gastropod.
    Author: Krug PJ, Zimmer RK.
    Journal: Biol Bull; 2004 Dec; 207(3):233-46. PubMed ID: 15616354.
    Abstract:
    Specific effects of alternative developmental programs on swimming and settlement behavior for marine larvae have not been identified experimentally. A major impediment to this research has been the rarity of species with variable development. Here, we compared traits related to movement and habitat selection for different ontogenetic stages of long-lived, feeding larvae (planktotrophic) and short-lived, nonfeeding larvae (lecithotrophic) of the herbivorous gastropod Alderia modesta. Newly hatched planktotrophic larvae swam in meandering paths with equal rates of upward and downward movement. As planktotrophic larvae developed towards competence (physiological ability to metamorphose), their swimming paths became straighter, faster, and increasingly directed towards the bottom, traits shared by newly hatched lecithotrophic larvae. Despite differing in developmental history, competent planktotrophic (32-d-old) and lecithotrophic larvae (competent upon hatching) exhibited qualitatively similar swimming behaviors and substrate specificity. However, lecithotrophic larvae moved downward at twice the speed of competent planktotrophic larvae, potentially producing a 5-fold higher rate of contact with the bottom in natural flows. Competent larvae swam downwards rather than passively sinking, even though sinking rates were faster than swimming speeds; active swimming may allow larvae to keep the velum extended, permitting rapid response to chemical settlement cues and promoting successful habitat colonization. Differences between larvae of the two development modes may reflect fine-tuning by selection of traits important for dispersal and settlement into patchy adult habitats.
    [Abstract] [Full Text] [Related] [New Search]