These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NdPASA: a novel pairwise protein sequence alignment algorithm that incorporates neighbor-dependent amino acid propensities.
    Author: Wang J, Feng JA.
    Journal: Proteins; 2005 Feb 15; 58(3):628-37. PubMed ID: 15616964.
    Abstract:
    Sequence alignment has become one of the essential bioinformatics tools in biomedical research. Existing sequence alignment methods can produce reliable alignments for homologous proteins sharing a high percentage of sequence identity. The performance of these methods deteriorates sharply for the sequence pairs sharing less than 25% sequence identity. We report here a new method, NdPASA, for pairwise sequence alignment. This method employs neighbor-dependent propensities of amino acids as a unique parameter for alignment. The values of neighbor-dependent propensity measure the preference of an amino acid pair adopting a particular secondary structure conformation. NdPASA optimizes alignment by evaluating the likelihood of a residue pair in the query sequence matching against a corresponding residue pair adopting a particular secondary structure in the template sequence. Using superpositions of homologous proteins derived from the PSI-BLAST analysis and the Structural Classification of Proteins (SCOP) classification of a nonredundant Protein Data Bank (PDB) database as a gold standard, we show that NdPASA has improved pairwise alignment. Statistical analyses of the performance of NdPASA indicate that the introduction of sequence patterns of secondary structure derived from neighbor-dependent sequence analysis clearly improves alignment performance for sequence pairs sharing less than 20% sequence identity. For sequence pairs sharing 13-21% sequence identity, NdPASA improves the accuracy of alignment over the conventional global alignment (GA) algorithm using the BLOSUM62 by an average of 8.6%. NdPASA is most effective for aligning query sequences with template sequences whose structure is known. NdPASA can be accessed online at http://astro.temple.edu/feng/Servers/BioinformaticServers.htm.
    [Abstract] [Full Text] [Related] [New Search]