These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Positive and negative regulation of nuclear factor-kappaB-mediated transcription by IkappaB-zeta, an inducible nuclear protein. Author: Motoyama M, Yamazaki S, Eto-Kimura A, Takeshige K, Muta T. Journal: J Biol Chem; 2005 Mar 04; 280(9):7444-51. PubMed ID: 15618216. Abstract: IkappaB-zeta is an inducible nuclear protein that interacts with nuclear factor-kappaB (NF-kappaB) via its carboxyl-terminal ankyrin-repeats. Previous studies using an NF-kappaB reporter have shown that IkappaB-zeta inhibits the activity of NF-kappaB. In the present study, we dissected the amino-terminal region of IkappaB-zeta, which shows no homology to any other proteins. Indirect immunofluorescence studies demonstrated the presence of a bipartite nuclear localization signal spanning amino acids 163-178. Using GAL4 fusion proteins, we found that internal fragments containing amino acids 329-402 possessed intrinsic transcriptional activation activity. Interestingly, the activity was not detected in GAL4 fusion proteins of the full-length IkappaB-zeta. On the other hand, the GAL4-dependent transcriptional activity was generated by co-expression of the GAL4-NF-kappaB p50 subunit fusion protein and the full-length IkappaB-zeta, neither of which exhibited the activity on their own. A new splicing variant, IkappaB-zeta(D), with a deletion of amino acids 236-429, was found to lack transactivation activity. Forced expression of IkappaB-zeta, but not IkappaB-zeta(D), augmented interleukin-6 production, indicating the functional significance of the transactivation activity. In contrast, tumor necrosis factor-alpha production was inhibited by expression of IkappaB-zeta, highlighting the dual functions of this molecule. These results indicate that IkappaB-zeta harbors latent transcriptional activation activity, and that the activity is expressed upon interaction with the NF-kappaB p50 subunit. In addition to the inhibitory activity on NF-kappaB-mediated transcription, the transcriptional activation activity of IkappaB-zeta should be crucial for the regulation of inflammation.[Abstract] [Full Text] [Related] [New Search]