These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chronic gliosis induced by loss of S-100B: knockout mice have enhanced GFAP-immunoreactivity but blunted response to a serotonin challenge.
    Author: Chang MS, Ariah LM, Marks A, Azmitia EC.
    Journal: Brain Res; 2005 Jan 07; 1031(1):1-9. PubMed ID: 15621007.
    Abstract:
    Serotonin (5-HT) can induce a release of intraglial S-100B and produce a change in glial morphology. Because S-100B can inhibit polymerization of glial fibrillary acidic protein (GFAP), we hypothesize that glial reactivity may reflect the loss of intraglial S-100B. Adult male transgenic S-100B homozygous knockout (-/-) mice (KO) and wild-type CD-1 (WT) mice were studied. S-100B-immunoreactivity (IR) was seen in the brain tissue of WT (CD-1) but not S-100B KO (-/-) mice. GFAP-IR was seen in both WT (CD-1) and S-100B KO (-/-) glia cells, but S-100B KO (-/-) GFAP-IR cells appeared larger, darker, and more branched than in WT (CD-1). To compare the response of GFAP-IR cells to 5-HT in S-100B KO (-/-) and WT (CD-1) mice, we injected animals with para-chloroamphetamine (PCA) over 2 days (5 and 10 mg/ml). PCA is a potent 5-HT releaser which can induce gliosis in the rodent brain. In WT (CD-1) mice, the size, branching, and density of GFAP-IR cells were significantly increased after PCA injections. No increase in GFAP-IR activation was seen in the S-100B KO (-/-) after PCA injections. Cell-specific densitometry (set at a threshold of 0-150 based on a scale of 255) in these animals statistically showed an increase in GFAP-IR after PCA injections in WT (CD-1) but not S-100B KO (-/-) mice. These results are consistent with the hypothesis that 5-HT may modulate glial morphology by inducing a release of intracellular S-100B, and this pathway is inoperable in the S-100B KO (-/-).
    [Abstract] [Full Text] [Related] [New Search]