These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation. Author: Maejima Y, Adachi S, Morikawa K, Ito H, Isobe M. Journal: J Mol Cell Cardiol; 2005 Jan; 38(1):163-74. PubMed ID: 15623433. Abstract: Two protein signaling systems, phosphorylation and S-nitrosylation, influence most aspects of cellular physiology. S-nitrosylation, which generates a nitrosothiol linkage on cysteine residues, is caused by nitric oxide (NO). NO is believed to act as an anti-apoptotic agent by inhibiting caspase activity in cardiomyocytes, but there is little direct evidence for this. We investigated whether apoptosis inhibition by NO involved S-nitrosylation of caspases in doxorubicin (DOX)-induced myocardial apoptosis. Cardiomyocytes were treated with 1 micromol/l of DOX to induce apoptosis. Pretreatment with an NO donor, S-nitroso-N-acetyl-penicillamine (SNAP) reduced the apoptosis. This effect was attenuated by treatment with 100 micromol/l of mercury dichloride (HgCl2), which is an agent of denitrosylation. After 24 h DOX-treatment, SNAP reduced the increased caspase-3 activity by 63%, and this effect was reversed by treatment with HgCl2. Immunoblot analysis showed that accumulation of the cleaved caspase-3 protein, an active form that induces apoptosis was inhibited significantly by SNAP. To elucidate nitrosothiol formation on caspase-3 by NO, we did several experiments. First, we prepared an immunoprecipitate of caspase-3 and measured the concentration of NO released from the precipitated complex by HgCl2. Second, S-nitrosylated proteins, purified by immunoprecipitation of caspase-3, were biotinylated and the biotin concentration was estimated by immunoblotting. Third, dual immunofluorescent staining was done with antibodies for S-nitrosocysteine and caspase-3. Results showed that formation of nitrosothiol in caspase-3 in DOX-treated cardiomyocytes with SNAP was increased significantly compared with untreated cardiomyocytes. We reported here that exogenous NO produces an anti-apoptotic effect by suppression of caspase activity via S-nitrosylation in cardiomyocytes.[Abstract] [Full Text] [Related] [New Search]