These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sphingosine 1-phosphate receptors mediate the lipid-induced cAMP accumulation through cyclooxygenase-2/prostaglandin I2 pathway in human coronary artery smooth muscle cells. Author: Damirin A, Tomura H, Komachi M, Tobo M, Sato K, Mogi C, Nochi H, Tamoto K, Okajima F. Journal: Mol Pharmacol; 2005 Apr; 67(4):1177-85. PubMed ID: 15625281. Abstract: Sphingosine 1-phosphate (S1P) has been shown to exert a variety of biological responses through extracellular specific receptors or intracellular mechanisms. In the present study, we characterized a signaling pathway of S1P-induced cAMP accumulation in human coronary artery smooth muscle cells (CASMCs). S1P induced biphasic cAMP accumulation composed of a short-term and transient response (a peak at 2.5 min) and a late and sustained response ( approximately 4-6 h). The late phase of cAMP accumulation was parallel to the increment of cyclooxygenase-2 protein expression and was inhibited by N-[2-(cyclohexyloxyl)-4-nitrophenyl]-methane sulfonamide (NS398), a cyclooxygenase-2-specific inhibitor. We were surprised to find that the cyclooxygenase-2 inhibitor also inhibited short-term cAMP accumulation even when cyclooxygenase-2 protein expression was not yet increased. More interestingly, the short-term cAMP accumulation was also completely inhibited by pertussis toxin, an inhibitor of G(i/o) proteins. JTE-013, a specific antagonist for S1P(2) receptors, inhibited the S1P-induced cAMP accumulation. Furthermore, small interfering RNAs targeted for S1P(2) receptors significantly inhibited the S1P-induced cAMP accumulation. The cAMP response was also inhibited by specific inhibitors for phospholipase C, extracellular signal-regulated kinase pathways, and cytosolic phospholipase A(2). S1P actually activated these enzyme activities and stimulated prostaglandin I(2) (PGI(2)) synthesis. Finally, exogenously applied arachidonic acid and PGI(2) induced cAMP accumulation to a similar extent as S1P. In conclusion, S1P induced cAMP accumulation through S1P receptors, including S1P(2) receptor and G(i/o) protein-mediated stimulation of intracellular signaling pathways involving cyclooxygenase-2-dependent PGI(2) synthesis.[Abstract] [Full Text] [Related] [New Search]