These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of capsaicin and nitric oxide synthase inhibitor on increase in cerebral blood flow induced by sensory and parasympathetic nerve stimulation in the rat. Author: Ayajiki K, Fujioka H, Shinozaki K, Okamura T. Journal: J Appl Physiol (1985); 2005 May; 98(5):1792-8. PubMed ID: 15626754. Abstract: Effects of electrical stimulation of the nerve bundles including sensory and parasympathetic nerves innervating cerebral arteries on cerebral blood flow (CBF) and mean arterial blood pressure (MABP) were investigated with a laser-Doppler flowmeter and a blood pressure monitoring system in anesthetized rats pretreated with and without capsaicin. The electrode was hooked on the nerve bundles including the distal nasociliary nerve from trigeminal nerve and parasympathetic nerve fibers from sphenopalatine ganglion. In control rats, the nerve stimulation for 30 s increased CBF in the ipsilateral side and MABP. Hexamethonium attenuated the increase in CBF and abolished that in MABP. Under treatment with hexamethonium, N(G)-nitro-L-arginine (L-NNA, 1 mg/kg) significantly attenuated the stimulation-induced increase in CBF, which was restored by the addition of L-arginine. Although the dose of L-NNA was raised up to 10 mg/kg, the stimulation-induced increase in CBF was not further inhibited and was never abolished. In capsaicin-pretreated rats, magnitudes of the stimulation-induced increases in CBF and MABP were lower than those in control rats. Hexamethonium attenuated the increase in CBF and abolished that in MABP. Under treatment with hexamethonium, L-NNA abolished the stimulation-induced increase in CBF in capsaicin-pretreated rats. In conclusion, nitric oxide released from parasympathetic nerves and neuropeptide(s) released antidromically from sensory nerves may be responsible for the increase in CBF in the rat. The afferent impulses by nerve stimulation may stimulate the trigeminal nerve and lead to the rapid increase in MABP, which partly contributes to the increase in CBF.[Abstract] [Full Text] [Related] [New Search]