These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Heat shock proteins and thermotolerance in a cultured cell line from the Mediterranean fruit fly, Ceratitis capitata.
    Author: Jang EB.
    Journal: Arch Insect Biochem Physiol; 1992; 19(2):93-103. PubMed ID: 1562747.
    Abstract:
    Heat shock proteins (hsps) were identified in a cell line from the Mediterranean fruit fly, Ceratitis capitata Wiedemann (Diptera: Tephritidae) exposed to elevated temperatures. Cells produced three hsps (Mr 87,000, 69,000, and 34,000) in response to a temperature shift from 26 degrees C to 37 degrees C (30-60 min) with a concomitant decrease in synthesis of most other cellular proteins. Synthesis of low Mr hsps was not evident. The heat shock response is triggered within 30 min at temperatures from 33 degrees C to 41 degrees C. At temperatures greater than 41 degrees C protein synthesis was shut down. Within 2-3 h after return to 26 degrees C, synthesis of proteins repressed at the higher temperatures resumed production while the major hsps disappear. Heat shock proteins were not produced in the presence of actinomycin D. Evaluations on the role of hsps in conferring thermotolerance to the cells showed an increase in cell viability in heat-shocked cells over non-heat-shocked cells (after 3 and 10 days) when subsequently placed at 45 degrees C for 1 h, a normally lethal temperature. Heat shock alone had little effect on subsequent cell viability or growth at 26 degrees C. These results suggest that hsps produced by these cells may aid in the maintenance of cell integrity and thus play a transitory role in thermotolerance.
    [Abstract] [Full Text] [Related] [New Search]