These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro molybdenum ligation to molybdopterin using purified components. Author: Nichols JD, Rajagopalan KV. Journal: J Biol Chem; 2005 Mar 04; 280(9):7817-22. PubMed ID: 15632135. Abstract: We have previously shown that Escherichia coli MoeA and MogA are required in vivo for the final step of molybdenum cofactor biosynthesis, the addition of the molybdenum atom to the dithiolene of molybdopterin. MoeA was also shown to facilitate the addition of molybdenum in an assay using crude extracts from E. coli moeA(-) cells. The experiments detailed in this report utilized an in vitro assay for MoeA-mediated molybdenum ligation to de novo synthesized molybdopterin using only purified components and monitoring the reconstitution of human aposulfite oxidase. In this assay, maximum activation was achieved by delaying the addition of aposulfite oxidase to allow for adequate molybdenum coordination to occur. Tungsten, which substitutes for molybdenum in hyperthermophilic organisms, could also be ligated to molybdopterin using this system, though not as efficiently as molybdenum. Addition of thiol compounds to the assay inhibited activity. Addition of MogA also inhibited the reaction. However, in the presence of ATP and magnesium, addition of MogA to the assay increased the level of aposulfite oxidase reconstitution beyond that observed with MoeA alone. This effect was not observed in the absence of MoeA. The results presented here demonstrate that MoeA is responsible for mediating molybdenum ligation to molybdopterin, whereas MogA stimulates this activity in an ATP-dependent manner.[Abstract] [Full Text] [Related] [New Search]