These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of flecainide on atrial and ventricular refractoriness in rabbits in vitro and in vivo.
    Author: Leung MW, Chan AP, So PP, Lowe GC, Guppy LJ, Walker MJ.
    Journal: Proc West Pharmacol Soc; 2004; 47():42-5. PubMed ID: 15633609.
    Abstract:
    This study compared the in vitro versus in vivo effects of flecainide on effective refractory period (ERP) in atrial and ventricular tissue in rabbits. Flecainide (a class 1c agent) was chosen, on the basis of its known pharmacological profile and antiarrhythmic actions, to provide a reference compound for investigating models that suitably predict the clinical effects of antiarrhythmics. The rabbit models used were those previously described by Lowe et al. (2002) and Leung et al. (2003). ERP was measured as the shortest S1-S2 interval that elicited a second contraction (in vitro) or electrogram (in vivo). Flecainide (1-10 microM) in vitro produced a concentration-dependent increase in ERP. The greatest drug-induced change from pre-drug values in vitro occurred with the highest concentration in atria and ventricles at 4 Hz. The change was 30+/-4 msec (33+/-7%) in atria versus 53+/-8 msec (46+/-10%) in ventricles. In vivo, flecainide (1 - 4 micromol/kg) dose-dependently increased atrial ERP at 2 and 6 Hz. The biggest change was 28+/-17 msec (29+/-16%). However, there was no effect at 4 Hz. In the ventricles, a dose-related increase in ERP was only seen at 4 Hz (26+/-6 msec). Flecainide showed no frequency dependence of action on ERP in any preparation. Flecainide produced adverse effects both in vitro and in vivo. A concentration and frequency-dependent negative inotropic effect was seen in vitro, and dose-related hypotension in vivo. The highest dose (8 micromol/kg i.v.) of flecainide was lethal. Flecainide produced the expected electrophysiological and toxicity profile, both in vitro and in vivo. Despite such findings, the drug is used to terminate and prevent atrial arrhythmias clinically. In conclusion our rabbit models for determining ERP may not be useful in predicting the clinical usefulness of a drug like flecainide.
    [Abstract] [Full Text] [Related] [New Search]