These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The small-molecule Bcl-2 inhibitor HA14-1 interacts synergistically with flavopiridol to induce mitochondrial injury and apoptosis in human myeloma cells through a free radical-dependent and Jun NH2-terminal kinase-dependent mechanism. Author: Pei XY, Dai Y, Grant S. Journal: Mol Cancer Ther; 2004 Dec; 3(12):1513-24. PubMed ID: 15634644. Abstract: Interactions between the cyclin-dependent kinase inhibitor flavopiridol and the small-molecule Bcl-2 antagonist HA14-1 were examined in human multiple myeloma cells. Whereas individual treatment of U266 myeloma cells with 10 micromol/L HA14-1 or 100 nmol/L flavopiridol had little effect, exposure of cells to flavopiridol (6 hours) followed by HA14-1 (18 hours) resulted in a striking increase in mitochondrial dysfunction (cytochrome c and Smac/DIABLO release; loss of mitochondrial membrane potential), activation of the caspase cascade, apoptosis, and diminished clonogenic survival. Similar findings were noted in other myeloma cell lines (e.g., MM.1S, RPMI8226, and NCI-H929) as well as in those resistant to dexamethasone and cytotoxic agents (e.g., MM.1R, 8226/Dox40, and 8226/LR5). Combined exposure to flavopiridol and HA14-1 was associated with down-regulation of Mcl-1 and Bcl-xL, Bid cleavage, and mitochondrial translocation of Bax. Flavopiridol/HA14-1-treated cells also exhibited a pronounced activation of Jun NH2-terminal kinase, a modest activation of p38 mitogen-activated protein kinase, and down-regulation of cyclin D1. Flavopiridol/HA14-1-induced apoptosis was associated with a marked increase in reactive oxygen species generation; moreover,both events were attenuated by the antioxidant N-acetyl-l-cysteine. Finally, in contrast to dexamethasone, flavopiridol/HA14-1-induced lethality was unaffected by exogenous interleukin-6 or insulin-like growth factor-I. Together, these findings indicate that flavopiridol and the small-molecule Bcl-2 antagonist HA14-1 cooperate to trigger oxidant injury, mitochondrial dysfunction, caspase activation, and apoptosis in human multiple myeloma cells and suggest that this approach may warrant further evaluation as an antimyeloma strategy.[Abstract] [Full Text] [Related] [New Search]