These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The Drosophila ninaG oxidoreductase acts in visual pigment chromophore production.
    Author: Sarfare S, Ahmad ST, Joyce MV, Boggess B, O'Tousa JE.
    Journal: J Biol Chem; 2005 Mar 25; 280(12):11895-901. PubMed ID: 15640158.
    Abstract:
    The Drosophila ninaG mutant is characterized by low levels of Rh1 rhodopsin, because of the inability to transport this rhodopsin from the endoplasmic reticulum to the rhabdomere. ninaG mutants do not affect the biogenesis of the minor opsins Rh4 and Rh6. A genetic analysis placed the ninaG gene within the 86E4-86E6 chromosomal region. A sequence analysis of the 15 open reading frames within this region from the ninaG(P330) mutant allele identified a stop codon in the CG6728 gene. Germ-line transformation of the CG6728 genomic region rescued the ninaG mutant phenotypes, confirming that CG6728 corresponds to the ninaG gene. The NinaG protein belongs to the glucose-methanol-choline oxidoreductase family of flavin adenine dinucleotide-binding enzymes catalyzing hydroxylation and oxidation of a variety of small organic molecules. High performance liquid chromatography analysis of retinoids was used to gain insight into the in vivo role of the NinaG oxidoreductase. The results show that when Rh1 is expressed as the major rhodopsin, ninaG flies fail to accumulate 3-hydroxyretinal. Further, in transgenic flies expressing Rh4 as the major rhodopsin, 3-hydroxyretinal is the major retinoid in ninaG+, but a different retinoid profile is observed in ninaG(P330). These results indicate that the ninaG oxidoreductase acts in the biochemical pathway responsible for conversion of retinal to the rhodopsin chromophore, 3-hydroxyretinal.
    [Abstract] [Full Text] [Related] [New Search]