These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glutathione synthesis in Streptococcus agalactiae. One protein accounts for gamma-glutamylcysteine synthetase and glutathione synthetase activities. Author: Janowiak BE, Griffith OW. Journal: J Biol Chem; 2005 Mar 25; 280(12):11829-39. PubMed ID: 15642737. Abstract: Gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS), distinct enzymes that together account for glutathione (GSH) synthesis, have been isolated and characterized from several Gram-negative prokaryotes and from numerous eukaryotes including mammals, amphibians, plants, yeast, and protozoa. Glutathione synthesis is relatively uncommon among the Gram-positive bacteria, and, to date, neither the genes nor the proteins involved have been identified. In the present report, we show that crude extracts of Streptococcus agalactiae catalyze the gamma-GCS and GS reactions and can synthesize GSH from its constituent amino acids. The putative gene for S. agalactiae gamma-GCS was identified and cloned, and the corresponding protein was expressed and purified. Surprisingly, it was found that the isolated enzyme catalyzes both the ATP-dependent synthesis of L-gamma-glutamyl-L-cysteine from L-glutamate and L-cysteine and the ATP-dependent synthesis of GSH from L-gamma-glutamyl-L-cysteine and glycine. This novel bifunctional enzyme, referred to as gamma-GCS-GS, has been characterized in terms of catalytic activity, substrate specificity, and inhibition by GSH, cystamine, and transition state analog sulfoximines. The N-terminal 518 amino acids of gamma-GCS-GS (total M(r) 85,000) show 32% identity and 43% similarity with E. coli gamma-GCS (M(r) 58,000), but the C-terminal putative GS domain (remaining 202 amino acids) of gamma-GCS-GS shows no significant homology with known GS sequences. The C terminus (360 amino acids) is, however, homologous to D-Ala, D-Ala ligase (24% identity; 38% similarity), an enzyme having the same protein fold as known GS proteins. These results are discussed in terms of the evolution of GSH synthesis and the possible occurrence of a similar bifunctional GSH synthesis enzyme in other bacterial species.[Abstract] [Full Text] [Related] [New Search]