These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Facilitation of spontaneous glutamate release by antidepressant drugs in rat locus coeruleus.
    Author: Ishibashi H, Eto K, Kajiwara M, Noda M.
    Journal: Neurosci Lett; 2005 Feb 10; 374(2):152-6. PubMed ID: 15644283.
    Abstract:
    The effects of antidepressant drugs on spontaneous excitatory postsynaptic currents (EPSCs) were investigated in the mechanically dissociated rat locus coeruleus (LC) neurons which had their presynaptic nerve terminals attached. The membrane currents were recorded by the whole-cell patch-clamp technique. Desipramine, a tricyclic antidepressant, reversibly and concentration-dependently increased the frequency of spontaneous EPSCs, but did not alter their amplitude distribution. The inhibitors of high-voltage-activated Ca2+ channels failed to block the facilitatory action of desipramine, while they inhibited the high K+-induced facilitation of spontaneous EPSC frequency. The desipramine action was also observed in the absence of extracellular Ca2+. Pretreatment of thapsigargin in Ca2+-free solution fully inhibited the desipramine action, thus suggesting the involvement of Ca2+ release from intracellular Ca2+ stores at glutamatergic presynaptic nerve terminals. Imipramine and nortriptyline, other tricyclic antidepressants, and amoxapine, mianserin and fluoxetine, non-tricyclic antidepressants, also increased the EPSC frequency, while tranylcypromine, an inhibitor of monoamine oxidase, did not increase the glutamate release. The present results indicate that modulation of spontaneous glutamatergic transmission by tricyclic- and non-tricyclic-antidepressant drugs may regulate the excitability of LC neurons.
    [Abstract] [Full Text] [Related] [New Search]