These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An arginine residue in the pore region is a key determinant of chloride dependence in cardiac pacemaker channels.
    Author: Wahl-Schott C, Baumann L, Zong X, Biel M.
    Journal: J Biol Chem; 2005 Apr 08; 280(14):13694-700. PubMed ID: 15644313.
    Abstract:
    The modulation of ion channel activity by extracellular ions plays a central role in the control of heart function. Here, we show that the sinoatrial pacemaker current I(f) is strongly affected by the extracellular Cl- concentration. We investigated the molecular basis of the Cl- dependence in heterologously expressed hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that represent the molecular correlate of I(f). Currents carried by the two cardiac HCN channel isoforms (HCN2 and HCN4) showed the same strong Cl- dependence as the sinoatrial I(f) and decreased to about 10% in the absence of external Cl-. In contrast, the neuronal HCN1 current was reduced to only 50% under the same conditions. Depletion of Cl- did not affect the voltage dependence of activation or the ion selectivity of the channels, indicating that the reduction of I(f) was caused by a decrease of channel conductance. A series of chimeras between HCN1 and HCN2 was constructed to identify the structural determinants underlying the different Cl- dependence of HCN1 and HCN2. Exchange of the ion-conducting pore region was sufficient to switch the Cl- dependence from HCN1- to HCN2-type and vice versa. Replacement of a single alanine residue in the pore of HCN1 (Ala-352) by an arginine residue present in HCN2 at equivalent position (Arg-405) induced HCN2-type chloride sensitivity in HCN1. Our data indicate that Arg-405 is a key component of a domain that allosterically couples Cl- binding with channel activation.
    [Abstract] [Full Text] [Related] [New Search]