These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human S-nitroso oxymyoglobin is a store of vasoactive nitric oxide. Author: Rayner BS, Wu BJ, Raftery M, Stocker R, Witting PK. Journal: J Biol Chem; 2005 Mar 18; 280(11):9985-93. PubMed ID: 15644316. Abstract: Nitric oxide (.NO) regulates vascular function, and myoglobin (Mb) is a heme protein present in skeletal, cardiac, and smooth muscle, where it facilitates O(2) transfer. Human ferric Mb binds .NO to yield nitrosylheme and S-nitroso (S-NO) Mb (Witting, P. K., Douglas, D. J., and Mauk, A. G. (2001) J. Biol. Chem. 276, 3991-3998). Here we show that human ferrous oxy-myoglobin (oxyMb) oxidizes .NO, with a second order rate constant k = 2.8 +/- 0.1 x 10(7) M(-1).s(-1) as determined by stopped-flow spectroscopy. Mixtures containing oxyMb and S-nitrosoglutathione or S-nitrosocysteine added at 1.5-2 moles of S-nitrosothiol/mol oxyMb yielded S-NO oxyMb through trans-nitrosation equilibria as confirmed with mass spectrometry. Rate constants for the equilibrium reactions were k(forward) = 110 +/- 3 and k(reverse) = 16 +/- 3 M(-1).s(-1) for S-nitrosoglutathione and k(forward) = 293 +/- 5 and k(reverse) = 20 +/- 2 M(-1).s(-1) for S-nitrosocysteine. Incubation of S-NO oxyMb with Cu(2+) ions stimulated .NO release as measured with a .NO electrode. Similarly, Cu(2+) released .NO from Mb immunoprecipitated from cultured human vascular smooth muscle cells (VSMCs) that were pre-treated with diethylaminenonoate. No .NO release was observed from VSMCs treated with vehicle alone or immunoprecipitates obtained from porcine aortic endothelial cells with and without diethylaminenonoate treatment. Importantly, pre-constricted aortic rings relaxed in the presence of S-NO oxyMb in a cyclic GMP-dependent process. These data indicate that human oxyMb rapidly oxidizes .NO and that biologically relevant S-nitrosothiols can trans-(S)nitrosate human oxyMb. Furthermore, S-NO oxyMb can be isolated from cultured human VSMCs exposed to an exogenous .NO donor at physiologic concentration. The potential biologic implications of S-NO oxyMb acting as a source of .NO are discussed.[Abstract] [Full Text] [Related] [New Search]