These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification and characterization of a second 4,4'-dibenzamido-2,2'-stilbenedisulphonate (DBDS)-binding site on band 3 and its relationship with the anion/proton co-transport function.
    Author: Salhany JM, Cordes KS, Sloan RL.
    Journal: Biochem J; 2005 May 15; 388(Pt 1):343-53. PubMed ID: 15647006.
    Abstract:
    Band 3 mediates both electroneutral AE (anion exchange) and APCT (anion/proton co-transport). Protons activate APCT and inhibit AE with the same pK (approximately 5.0). SDs (stilbenedisulphonates) bind to a primary, high-affinity site on band 3 and inhibit both AE and APCT functions. In this study, we present fluorescence and kinetic evidence showing that lowering the pH activates a second site on band 3, which binds DBDS (4,4'-dibenzamido-2,2'-stilbenedisulphonate) independently of chloride concentration, and that DBDS binding to the second site inhibits the APCT function of band 3. Activation of the second site correlated with loss of chloride binding to the transport site, thus explaining the lack of competition. The kinetics of DBDS binding at the second site could be simulated by a slow-transition, two-state exclusive binding mechanism (R0<-->T0+D<-->TD<-->RD, where D represents DBDS, R0 and T0 represent alternate conformational states at the second DBDS-binding site, and TD and RD are the same two states with ligand DBDS bound), with a calculated overall Kd of 3.9 microM and a T0+D<-->TD dissociation constant of 55 nM. DBDS binding to the primary SD site inhibited approx. 94% of the proton transport at low pH (KI=68.5+/-11.8 nM). DBDS binding to the second site inhibited approx. 68% of the proton transport (KI=7.27+/-1.27 microM) in a band 3 construct with all primary SD sites blocked through selective cross-linking by bis(sulphosuccinimidyl)suberate. DBDS inhibition of proton transport at the second site could be simulated quantitatively within the context of the slow-transition, two-state exclusive binding mechanism. We conclude that band 3 contains two DBDS-binding sites that can be occupied simultaneously at low pH. The binding kinetic and transport inhibition characteristics of DBDS interaction with the second site suggest that it may be located within a gated access channel leading to the transport site.
    [Abstract] [Full Text] [Related] [New Search]