These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of ionic strength on the organization and dynamics of tryptophan residues in erythroid spectrin: a fluorescence approach.
    Author: Kelkar DA, Chattopadhyay A, Chakrabarti A, Bhattacharyya M.
    Journal: Biopolymers; 2005 Apr 15; 77(6):325-34. PubMed ID: 15648086.
    Abstract:
    The ionic strength of the medium plays an important role in the structure and conformation of erythroid spectrin. The spectrin dimer is a flexible rod at physiological ionic strength. However, lower ionic strength results in elongation and rigidification (stiffening) of spectrin as shown earlier by electron microscopy and hydrodynamic studies. The ionic strength induced structural transition does not involve any specific secondary structural changes. In this article, we have used a combination of fluorescence spectroscopic approaches that include red edge excitation shift (REES), fluorescence quenching, time-resolved fluorescence measurements, and chemical modification of the spectrin tryptophans to assess the environment and dynamics of tryptophan residues of spectrin under different ionic strength conditions. Our results show that while REES, fluorescence anisotropy, lifetime, and chemical modification of spectrin tryptophans remain unaltered in low and high ionic strength conditions, quenching of tryptophan fluorescence by the aqueous quencher acrylamide (but not the hydrophobic quencher trichloroethanol) and resonance energy transfer to a dansyl-labeled fatty acid show differences in tryptophan environment. These results, which report tertiary structural changes in spectrin upon change in ionic strength, are relevant in understanding the molecular details underlying the conformational flexibility of spectrin.
    [Abstract] [Full Text] [Related] [New Search]