These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Na+-K+ pump stimulation restores carbacholine-induced loss of excitability and contractility in rat skeletal muscle. Author: Macdonald WA, Nielsen OB, Clausen T. Journal: J Physiol; 2005 Mar 01; 563(Pt 2):459-69. PubMed ID: 15649983. Abstract: Intense exercise results in increases in intracellular Na+ and extracellular K+ concentrations, leading to depolarization and a loss of muscle excitability and contractility. Here, we use carbacholine to chronically activate the nicotinic acetylcholine (nACh) receptors to mimic the changes in membrane permeability, chemical Na+ and K+ gradients and membrane potential observed during intense exercise. Intact rat soleus muscles were mounted on force transducers and stimulated electrically to evoke short tetani at regular intervals. Carbacholine produced a 2.6-fold increase in Na+ influx that was tetrodotoxin (TTX) insensitive, but abolished by tubocurarine, resulting in a significant 36% increase in intracellular Na+, and 8% decrease in intracellular K+ content. The mid region, near the motor end plate, had much larger alterations than the more distal regions of the muscle, and showed a larger membrane depolarization from -73 +/- 1 to -60 +/- 1 mV compared with -64 +/- 1 mV. Carbacholine (10(-4) M) significantly reduced tetanic force to 31 +/- 3% of controls, which underwent significant recovery upon application of Na+-K+ pump stimulators: salbutamol (10(-5) M), adrenaline (10(-5) M) and calcitonin gene-related peptide (CGRP; 10(-7) M). The force recovery with salbutamol was accompanied by a recovery of intracellular Na+ and K+ contents, and a small but significant 4-5 mV recovery of membrane potential. Similar results were obtained using succinylcholine (10(-4) M), indicating that Na+-K+ pump stimulation may prevent or restore succinylcholine-induced hyperkalaemia. The stimulation of the Na+-K+ pump allows muscle to partially recover contractility by regaining excitability through electrogenically driven repolarization of the muscle membrane.[Abstract] [Full Text] [Related] [New Search]