These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Compatible and counteracting solutes: protecting cells from the Dead Sea to the deep sea.
    Author: Yancey PH.
    Journal: Sci Prog; 2004; 87(Pt 1):1-24. PubMed ID: 15651637.
    Abstract:
    Cells of many organisms accumulate certain small organic molecules--called compatible and counteracting solutes, compensatory solutes, or chemical chaperones--in response to certain physical stresses. These solutes include certain carbohydrates, amino acids, methylamine and methylsulphonium zwitterions, and urea. In osmotic dehydrating stress, these solutes serve as cellular osmolytes. Unlike common salt ions and urea (which inhibit proteins), some organic osmolytes are compatible; i.e., they do not perturb macromolecules such as proteins. In addition, some may protect cells through metabolic processes such as antioxidation reactions and sulphide detoxification. Other osmolytes, and identical or similar solutes accumulated in anhydrobiotic, heat and pressure stresses, are termed counteracting solutes or chemical chaperones because they stabilise proteins and counteract protein-destabilising factors such as urea, temperature, salt, and hydrostatic pressure. Stabilisation of proteins, not necessarily beneficial in the absence of a perturbant, may result indirectly from effects on water structure. Osmotic shrinkage of cells activates genes for chaperone proteins and osmolytes by mechanisms still being elucidated. These solutes have applications in agriculture, medicine and biotechnology.
    [Abstract] [Full Text] [Related] [New Search]