These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preclinical ex vivo expansion of G-CSF-mobilized peripheral blood stem cells: effects of serum-free media, cytokine combinations and chemotherapy. Author: Li K, Li CK, Chuen CK, Tsang KS, Fok TF, James AE, Lee SM, Shing MM, Chik KW, Yuen PM. Journal: Eur J Haematol; 2005 Feb; 74(2):128-35. PubMed ID: 15654904. Abstract: OBJECTIVES: Ex vivo expansion of granulocyte-colony stimulating factor (G-CSF)-mobilized peripheral blood stem cells (PBSC) is a promising approach for overcoming the developmental delay of bone marrow (BM) reconstitution after transplantation. This project investigated the effects of culture duration, serum-free media, cytokine combinations, and chemotherapy on the outcomes of expansion. METHODS: Enriched CD34+ cells were cultured for 8 or 10 d in serum-free media (QBSF-60 or X-Vivo 10) and four combinations of cytokines consisting of recombinant human pegylated-megakaryocyte growth and development factor, stem cell factor, flt-3 ligand, G-CSF, interleukin (IL)-6, platelet-derived growth factor (PDGF), and IL-1beta. RESULTS: Eight days of culture in QBSF-60 significantly supported efficient expansions of CD34+ cells, CD34+ CD38- cells, colony-forming units (CFU) of myeloid, erythroid, megakaryocytic, and mixed lineages to 3.76-, 14.4-, 28.3-, 24.0-, 38.1-, and 15.7-fold, respectively. Whilst PDGF or IL-6 enhanced the expansion of early, myeloid, and erythroid progenitors, IL-1beta specifically promoted the megakaryocytic lineage. Engraftment of human CD45+ cells were detectable in all non-obese diabetic/severe-combined immunodeficient mice transplanted with expanded PBSC from donor samples, being 5.80 +/- 3.34% of mouse BM cells. The expansion and engraftment capacity of CD34+ cells from subjects postchemotherapy were significantly compromised across the panel of progenitor cells. CONCLUSION: Our results provided an optimized protocol for PBSC expansion, applicable to ameliorating neutropenia and thrombocytopenia in post-BM transplant patients by the prompt provision of progenitor cells. For postchemotherapy patients, expansion products might provide committed progenitors for improving short-term engraftment, but not self-renewable stem cells.[Abstract] [Full Text] [Related] [New Search]