These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human colon cancer cells lacking Bax resist curcumin-induced apoptosis and Bax requirement is dispensable with ectopic expression of Smac or downregulation of Bcl-XL. Author: Rashmi R, Kumar S, Karunagaran D. Journal: Carcinogenesis; 2005 Apr; 26(4):713-23. PubMed ID: 15661804. Abstract: Multiple apoptotic stimuli induce conformational changes in Bax, a proapoptotic protein from the Bcl-2 family and its deficiency is a frequent cause of chemoresistance in colon adenocarcinomas. Curcumin, a dietary compound from turmeric, is known to induce apoptosis in a variety of cancer cells. To understand the role of Bax in curcumin-induced apoptosis we used HCT116 human colon cancer cells with one allele of Bax gene (Bax+/-) and Bax knockout HCT116 (Bax-/-) cells in which Bax gene is inactivated by homologous recombination. Cell viability decreased in a concentration-dependent manner in Bax+/- cells treated with curcumin (0-50 microM) whereas only minimal changes in viability were observed in Bax-/- cells upon curcumin treatment. In Bax-/- cells curcumin-induced activation of caspases 9 and 3 was blocked and that of caspase 8 remained unaltered. Curcumin-induced release of cytochrome c, Second mitochondria derived activator of caspase (Smac) and apoptosis inducing factor (AIF) was also blocked in Bax-/- cells and reintroduction of Bax, downregulation of the antiapoptotic protein Bcl-XL by antisense DNA as well as the overexpression of Smac, highly sensitized the Bax-/- cells toward curcumin-induced apoptosis. There was no considerable difference in the percentage of apoptotic cells in Bak RNAi transfected Bax+/- or Bax-/- cells treated with curcumin when compared with their corresponding vector transfected cells treated with curcumin. The present study demonstrates the role of Bax but not Bak as a critical regulator of curcumin-induced apoptosis and implies the potential of targeting antiapoptotic proteins like Bcl-XL or overexpression of proapoptotic proteins like Smac as interventional approaches to deal with Bax-deficient chemo-resistant cancers for curcumin-based therapy.[Abstract] [Full Text] [Related] [New Search]