These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) signals through retinoic acid receptor-related orphan receptor-alpha but not peroxisome proliferator-activated receptor-gamma in human vascular endothelial cells: the effect of 15d-PGJ2 on tumor necrosis factor-alpha-induced gene expression.
    Author: Migita H, Morser J.
    Journal: Arterioscler Thromb Vasc Biol; 2005 Apr; 25(4):710-6. PubMed ID: 15662020.
    Abstract:
    OBJECTIVE: 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), a natural ligand of the peroxisome proliferator-activated receptor-gamma (PPARgamma), has been shown to inhibit proinflammatory gene expression, but the signaling mechanisms involved remain unclear. Because retinoic acid receptor-related orphan receptor-alpha (RORalpha) has been reported to suppress tumor necrosis factor-alpha (TNF-alpha)-induced expression of proinflammatory genes, we hypothesized that 15d-PGJ2 may induce RORalpha expression resulting in inhibition of proinflammatory gene expression. METHODS AND RESULTS: We demonstrate that 15d-PGJ2 induced RORalpha1 and RORalpha4 expression and inhibited TNF-alpha-induced vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression in human umbilical vein endothelial cells (HUVECs). In contrast, the synthetic PPARgamma ligand pioglitazone weakly induced RORalpha4 expression but did not affect RORalpha1 expression or TNF-alpha-induced gene expression. Biphenol A diglycidyl ether, a PPARgamma antagonist, did not block the effect of 15d-PGJ2 on RORalpha expression. Adenovirus-mediated overexpression of RORalpha1 inhibited TNF-alpha-induced VCAM-1 and ICAM-1 expression, and overexpression of a mutant form of RORalpha1 (RORalpha1Delta), which inhibited transcriptional activity of RORalpha1 and RORalpha4, attenuated its inhibition. Furthermore, we found that RORalpha1Delta attenuated the inhibitory actions of 15d-PGJ2 on TNF-alpha-induced VCAM-1 and ICAM-1 expression. CONCLUSIONS: These results suggest that 15d-PGJ2 inhibits TNF-alpha-induced expression of proinflammatory genes mediated in part via induction of RORalpha in HUVECs. This mechanism provides a novel insight into PPARgamma-independent actions of 15d-PGJ2.
    [Abstract] [Full Text] [Related] [New Search]