These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Allosteric network of cAMP-dependent protein kinase revealed by mutation of Tyr204 in the P+1 loop. Author: Yang J, Garrod SM, Deal MS, Anand GS, Woods VL, Taylor S. Journal: J Mol Biol; 2005 Feb 11; 346(1):191-201. PubMed ID: 15663937. Abstract: Previous studies on the catalytic subunit of cAMP-dependent protein kinase (PKA) identified a conserved interaction pair comprised of Tyr204 from the P+1 loop and Glu230 at the end of the alphaF-helix. Single-point mutations of Tyr204 to Ala (Y204A) and Glu230 to Gln (E230Q) both resulted in alterations in enzymatic kinetics. To understand further the molecular basis for the altered kinetics and the structural role of each residue, we analyzed the Y204A and the E230Q mutants using hydrogen/deuterium (H/D) exchange coupled with mass spectrometry and other biophysical techniques. The fact that the mutants exhibit distinct molecular properties, supports previous hypotheses that these two residues, although in the same interaction node, contribute to the same enzymatic functions through different molecular pathways. The Tyr204 mutation appears to affect the dynamic properties, while the Glu230 mutation affects the surface electrostatic profile of the enzyme. Furthermore, H/D exchange analysis defines the dynamic allosteric range of Tyr204 to include the catalytic loop and three additional distant surface regions, which exhibit increased deuterium exchange in the Y204A but not the E230Q mutant. Interestingly, these are the exact regions that previously showed decreased deuterium exchange upon binding of the RIalpha regulatory subunit of PKA. We propose that these sites, coupled with the P+1 loop through Tyr204, represent one of the major allosteric networks in the kinase. This coupling provides a coordinated response for substrate binding and enzyme catalysis. H/D exchange analysis also further defines the stable core of the catalytic subunit to include the alphaE, alphaF and alphaH-helix. All these observations lead to an interesting new way to view the structural architecture and allosteric conformational regulation of the protein kinase molecule.[Abstract] [Full Text] [Related] [New Search]