These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anti-inflammatory effects of a traditional Korean herbal formulation, Silsosangami, consisting of seven medicinal herbs: effect on hemolysis, neutrophil function, and gene expressions of iNOS and COX-2.
    Author: Park WH, Kim CH, Lee YC, Kim CH.
    Journal: Vascul Pharmacol; 2004 Aug; 42(1):7-15. PubMed ID: 15664882.
    Abstract:
    Silsosangami is a dried decoctum of a mixture of seven Korean herbal medicine, which is consisted of seven herbs (indicated as concentrations) of Typhae Pollen, Pteropi Faeces, Paeoniae Radicis rubra, Cnidii Rhizoma, Persicae Semen, Carthami Flos and Curcumae Tuber. In the present study, the effects of Silsosangami water extract (SSG) on hemolysis in human blood were studied. Using an in vitro system, only Curcumae Tuber, Persicae Semen and Paeoniae Radicis rubra had the strongest effects on hemolysis; Typhae Pollen and Pteropi Faeces had the slight effects; and Cnidii Rhizoma and Carthami Flos had no effect. On the other hand, the SSG inhibited neutrophil functions, including degranulation, superoxide generation, and leukotriene B4 production, without any effect on 5-lipoxygenase activity. This SSG reduced nitric oxide (NO) and prostaglanin E2 (PGE2) production in mouse peritoneal macrophages stimulated with lipopolysaccharide, without the influence on the activity of inducible NO synthase (iNOS), cyclooxygenase COX-2 and COX-1 being observed. SSG significantly reduced mouse paw oedema induced by carrageenan. Western blot analysis showed that SSG reduced the expression of iNOS and COX-2. These results suggested that SSG might be used as a novel antithrombotic therapeutic agents in post-myocardial infarction and also, indicated that SSG exerts anti-inflammatory effects related to the inhibition of neutrophil functions and of NO and PGE2 production, which could be due to a decreased expression of iNOS and COX-2.
    [Abstract] [Full Text] [Related] [New Search]