These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alpha1- and beta1-adrenoceptor signaling fully compensates for beta3-adrenoceptor deficiency in brown adipocyte norepinephrine-stimulated glucose uptake.
    Author: Chernogubova E, Hutchinson DS, Nedergaard J, Bengtsson T.
    Journal: Endocrinology; 2005 May; 146(5):2271-84. PubMed ID: 15665039.
    Abstract:
    To assess the relative roles and potential contribution of adrenergic receptor subtypes other than the beta3-adrenergic receptor in norepinephrine-mediated glucose uptake in brown adipocytes, we have here analyzed adrenergic activation of glucose uptake in primary cultures of brown adipocytes from wild-type and beta3-adrenergic receptor knockout (KO) mice. In control cells in addition to high levels of beta3-adrenergic receptor mRNA, there were relatively low alpha1A-, alpha1D-, and moderate beta1-adrenergic receptor mRNA levels with no apparent expression of other adrenergic receptors. The levels of alpha1A-, alpha1D-, and beta1-adrenergic receptor mRNA were not changed in the beta3-KO brown adipocytes, indicating that the beta3-adrenergic receptor ablation does not influence adrenergic gene expression in brown adipocytes in culture. As expected, the beta3-adrenergic receptor agonists BRL-37344 and CL-316 243 did not induce 2-deoxy-d-glucose uptake in beta3-KO brown adipocytes. Surprisingly, the endogenous adrenergic neurotransmitter norepinephrine induced the same concentration-dependent 2-deoxy-D-glucose uptake in wild-type and beta3-KO brown adipocytes. This study demonstrates that beta1-adrenergic receptors, and to a smaller degree alpha1-adrenergic receptors, functionally compensate for the lack of beta3-adrenergic receptors in glucose uptake. Beta1-adrenergic receptors activate glucose uptake through a cAMP/protein kinase A/phosphatidylinositol 3-kinase pathway, stimulating conventional and novel protein kinase Cs. The alpha1-adrenergic receptor component (that is not evident in wild-type cells) stimulates glucose uptake through a phosphatidylinositol 3-kinase and protein kinase C pathway in the beta3-KO cells.
    [Abstract] [Full Text] [Related] [New Search]