These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect and stability of gliotoxin, an Aspergillus fumigatus toxin, on in vitro rumen fermentation.
    Author: Morgavi DP, Boudra H, Jouany JP, Michalet-Doreau B.
    Journal: Food Addit Contam; 2004 Sep; 21(9):871-8. PubMed ID: 15666981.
    Abstract:
    Aspergillus fumigatus is a toxicogenic fungus usually found in contaminated animal feeds, especially in conserved forages where it can produce several mycotoxins. Gliotoxin, one of the most important toxic metabolites produced by this fungus, has antibacterial, immunosuppressive and apoptotic effects. Ruminants due to the high proportion of forages they receive in the ration would be particularly exposed to gliotoxin. The objective of this work was (1) to assess the effect of gliotoxin on in vitro rumen fermentation and (2) to determine the effect of fermentation on gliotoxin stability. Gliotoxin did not affect rumen fermentation at concentrations found in naturally contaminated feeds. No effects were observed up to a concentration of 20 microg toxin ml(-1) and an extremely high toxin concentration (80 microg ml(-1)) was necessary to affect dry matter degradation, gas and total volatile fatty acids production by 24, 37 and 18%, respectively (p < 0.01). In addition, the toxin was unstable in the rumen environment with 90% disappearance at 6 h of incubation (p < 0.05). In contrast, extracts of A. fumigatus cultures containing gliotoxin at concentrations several times lower than that used for experiments with pure toxin had a negative effect on fermentations indicating the toxicity and possible synergism of other metabolites produced by this fungus. Extracts containing 8.8 microg gliotoxin ml(-1) decreased dry matter degradation, gas and volatile fatty acids production by 28, 46 and 35%, respectively (p < 0.01). Identification of these toxic metabolites and assessment of the rate of passage of gliotoxin to the lower intestinal tract is necessary to evaluate the potential risk of these toxins to ruminants.
    [Abstract] [Full Text] [Related] [New Search]