These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A dose-escalation trial with the adaptive radiotherapy process as a delivery system in localized prostate cancer: analysis of chronic toxicity. Author: Brabbins D, Martinez A, Yan D, Lockman D, Wallace M, Gustafson G, Chen P, Vicini F, Wong J. Journal: Int J Radiat Oncol Biol Phys; 2005 Feb 01; 61(2):400-8. PubMed ID: 15667959. Abstract: PURPOSE: To evaluate the validity of the chosen adaptive radiotherapy (ART) dose-volume constraints while testing the hypothesis that toxicity would not be greater at higher tumor dose levels. MATERIALS AND METHODS: In the ART dose escalation/selection trial, treatment was initiated with a generic planning target volume (PTV) formed as a 1-cm expansion of the clinical target volume (CTV). After the first week of therapy, the patient was replanned with a patient-specific PTV, constructed with CT and electronic portal images obtained in the first 4 days of treatment. A new multileaf collimator beam aperture was used. A minimum dose prescribed to the patient-specific PTV, ranging 70.2-79.2 Gy, was determined on the basis of the following rectal and bladder constraints: <5% of the rectal wall has a dose >82 Gy, <30% of the rectal wall has a dose >75.6 Gy, <50% of the bladder volume has a dose >75.6 Gy, and the maximum bladder dose is 85 Gy. A conformal four-field and/or intensity-modulated radiotherapy (IMRT) technique was used. Independent reviewers scored toxicities. The worst toxicity score seen was used as per the Common Toxicity Criteria grade scale (version 2). We divided the patients into three separate groups: 70.2-72 Gy, >72-75.6 Gy, and >75.6-79.2 Gy. Toxicities in each group were quantified and compared by the Pearson chi-squared test to validate our dose escalation/selection model. Grades 0, 1, 2, and 3 were censored as none vs. each category and none vs. any. RESULTS: We analyzed patients with follow-up greater than 1 year. The mean duration of follow-up was 29 months (range, 12-46 months). We report on 280 patients, mean age 72 years (range, 51-87 years). Only 60 patients received adjuvant hormones. Mean pretreatment prostate-specific antigen level was 9.3 ng/mL (range, 0.6-120 ng/mL). Mean Gleason score was 6 (range, 3-9). The lowest dose level was given to 49 patients, the intermediate dose to 131 patients, and 100 patients received the highest dose escalation. One hundred eighty-one patients (65%) were treated to a prostate field only and 99 patients (35%) to prostate and seminal vesicles. Chronic genitourinary and/or gastrointestinal categories were incontinence, persistent urinary retention, increased urinary frequency/urgency, urethral stricture, hematuria, diarrhea, rectal pain, bleeding, ulcer, fistula, incontinence, and proctitis. Toxicity at the high dose level was not different from toxicity at the intermediate or lower dose levels. No significant difference was observed in any of the individual toxicity categories. CONCLUSIONS: By applying the ART process--namely, developing a patient-specific PTV--to prostate cancer patients, significant dose escalation can be achieved without increases in genitourinary or gastrointestinal toxicity. Our data validate the rectal and bladder dose-volume constraints chosen for our three-dimensional conformal and IMRT prostrate radiotherapy planning.[Abstract] [Full Text] [Related] [New Search]