These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of frozen storage on herbicide degradation capacity in surface and subsurface sandy soils.
    Author: Mortensen SK, Jacobsen CS.
    Journal: Environ Sci Technol; 2004 Dec 15; 38(24):6625-32. PubMed ID: 15669321.
    Abstract:
    The degradation of MCPA and metribuzin was investigated in laboratory batch experiments using fresh and frozen-stored soil samples from the unsaturated zone of a sandy soil. Mineralization potentials measured in fresh and frozen-stored soils were similar, and mineralization kinetics in surface and subsurface soils could be fitted using the same kinetic models. MCPA mineralization data from all three horizons were best described with the exponential growth form of the three-half-order model. During the mineralization of MCPA, growth in MCPA-degrading microbial populations was confirmed by increases in the abundance of tfdA genes following MCPA exposure. In contrast to MCPA, metribuzin mineralization followed zero-order kinetics, and very little metribuzin was mineralized (<1%) in all three of the investigated soil horizons. In addition, metribuzin dissipation and metabolite formation were also measured in surface and subsurface soils using LC-MS/MS. Differences in metribuzin dissipation were observed in the A-horizon at the beginning of the experiment and resulted in substantially different 50% disappearance time, DT50, values for frozen-stored (36 days) and fresh (<15 days) soil samples. However, the % of metribuzin remaining in fresh and frozen-stored surface soils was comparable from day 37 and thereafter.
    [Abstract] [Full Text] [Related] [New Search]