These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design and development of a fluorescent probe for monitoring hydrogen peroxide using photoinduced electron transfer. Author: Soh N, Sakawaki O, Makihara K, Odo Y, Fukaminato T, Kawai T, Irie M, Imato T. Journal: Bioorg Med Chem; 2005 Feb 15; 13(4):1131-9. PubMed ID: 15670921. Abstract: A novel fluorescent probe, 7-hydroxy-2-oxo-N-(2-(diphenylphosphino)ethyl)-2H-chromene-3-carboxamide (DPPEA-HC) was developed for use in monitoring hydrogen peroxide (H2O2) production. DPPEA-HC, which consists of a diphenylphosphine moiety and a 7-hydroxycoumarin moiety, reacts with H2O2 to form DPPEA-HC oxide, which is analogous to the reaction of triphenylphosphine with hydroperoxides such as H2O2 to form triphenylphosphine oxide. Photoinduced electron transfer (PET) was applied in the design of DPPEA-HC. Since the diphenylphosphine moiety and the 7-hydroxycoumarin moiety would act as the PET donor and the acceptor, respectively, it would be expected that DPPEA-HC would rationally cancel the PET process via the formation of DPPEA-HC oxide, based on the calculated energy levels of the donor and the acceptor moieties using the B3LYP/6-31G*//AM1 method. The fluorescence intensity of DPPEA-HC increased on the addition of a H2O2 solution in 100 mM sodium phosphate buffer (pH7.4), as predicted from the energy level calculation and a good correlation between increase in the fluorescence of DPPEA-HC and the concentration of H2O2 was observed. DPPEA-HC was also fluoresced by H2O2, which was enzymatically produced in xanthine/xanthine oxidase/superoxide dismutase (XA/XOD/SOD) system. The increase in the fluorescence of DPPEA-HC in the presence of H2O2 immediately ceased on the addition of catalase (CAT), which catalyzes the disproportionation of H2O2. In addition, DPPEA-HC was found to have a much higher selectivity for H2O2 and a greater resistance to autoxidation than 2',7'-dichlorodihydrofluoresein (DCFH). Time-resolved fluorescence measurements of DPPEA-HC and DPPEA-HC oxide confirmed that the fluorescence off/on switching mechanism of DPPEA-HC is based on the PET on/off control.[Abstract] [Full Text] [Related] [New Search]