These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Proportional assist ventilation reduces the work of breathing during exercise at moderate altitude. Author: Kleinsasser A, Von Goedecke A, Hoermann C, Maier S, Schaefer A, Keller C, Loeckinger A. Journal: High Alt Med Biol; 2004; 5(4):420-8. PubMed ID: 15671631. Abstract: Reducing the work of breathing (WOB) during exercise and thus the oxygen required solely for ventilation may be an option to increase the oxygen available for nonventilatory physiological tasks at altitude. This study evaluated whether pressure support ventilation (PSV) and proportional assist ventilation (PAV) may partially reduce WOB during exercise at altitude. Seven volunteers breathing with either PSV or PAV or without support (control) were examined for WOB, inspiratory pressure time product (iPTP), and (O(2)) before and during pedaling at 160 W for 4 min on an ergometer at an altitude of 2860 m, where barometric pressure and oxygen partial pressure are approximately 30% less than at sea level. PSV and PAV reduced WOB from 4.5 +/- 0.9 J/L(-1)/min(-1) during unsupported breathing to 3.7 +/- 0.4 (p < 0.05) and 3.2 +/- 0.7 (p < 0.01), respectively. iPTP was reduced during PAV (570 +/- 151 cm H(2)O/sec/min(-1), p < 0.01), but not during PSV (727 +/- 116, p = 0.58) compared with unsupported ventilation during exercise (763 +/- 90). During PSV and PAV breathing, higher arterial oxygen saturations (84 +/- 2%, p < 0.05, and 86 +/- 1%, p < 0.01, respectively) were observed compared with control (80 +/- 3%), indicating that PSV and PAV attenuated hypoxemia during exercise at altitude. Total body (O(2)), however, was not reduced during PSV or PAV. In conclusion, both PSV and PAV reduced the WOB during exercise at altitude, but only PAV reduces iPTP. Both modes reduce hypoxemia, which may be due to higher alveolar ventilation or decreased ventilation-perfusion heterogeneity compared to unsupported breathing.[Abstract] [Full Text] [Related] [New Search]