These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The pH dependence of the kinetic parameters of ketol acid reductoisomerase indicates a proton shuttle mechanism for alkyl migration. Author: Mrachko GT, Chunduru SK, Calvo KC. Journal: Arch Biochem Biophys; 1992 May 01; 294(2):446-53. PubMed ID: 1567200. Abstract: The enzyme ketol acid reductoisomerase catalyzes the second common reaction in the biosynthesis of the branched chain amino acids. The reaction is complex as an alkyl migration and a ketone reduction apparently occur as separate steps during the conversion of acetolactate to 2,3-dihydroxy-3-methylbutyrate. This paper reports on the pH dependence of the kinetic parameters of the enzyme. The pH variation of log(V/K) for acetolactate was fit to an equation describing a bell-shaped curve, indicating an acid and a base catalyst for the reaction. In the reverse direction, V/K for 2,3-dihydroxy-3-methylbutyrate is constant over the pH range 8 to 10 and decreases below pH 8 with the ionization of two catalytic groups. The pH dependence of the V/K values for reduction of the kinetically competent intermediate and analogs of this intermediate are also described by a bell-shaped curve. The pH dependence of the V/K for alkyl migration of this intermediate indicates a single base catalyst for this reaction. We observe no deuterium kinetic isotope effect on V or V/K for the reaction of acetolactate at any pH. We observe a pH-dependent kinetic isotope effect on V/K for the reduction of the intermediate, the magnitude of which is metal ion dependent. Larger KIE's are observed in the presence of Mn2+ as opposed to Mg2+. In the reverse reaction there is a pH-dependent kinetic isotope effect on V/K. Based on the pH dependence of the kinetic parameters and the kinetic isotope effects, we propose a base-catalyzed proton shuttle mechanism for the alkyl migration reaction followed by an acid-assisted ketone reduction by NADPH.[Abstract] [Full Text] [Related] [New Search]