These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional interaction between the associative parietal cortex and hippocampal place cell firing in the rat. Author: Save E, Paz-Villagran V, Alexinsky T, Poucet B. Journal: Eur J Neurosci; 2005 Jan; 21(2):522-30. PubMed ID: 15673451. Abstract: The hippocampus and associative parietal cortex (APC) both contribute to spatial memory but the nature of their functional interaction remains unknown. To address this issue, we investigated the effects of APC lesions on hippocampal place cell firing in freely moving rats. Place cells were recorded from APC-lesioned and control rats as they performed a pellet-chasing task in a circular arena containing three object cues. During successive recording sessions, cue manipulations including object rotation in the absence of the rat and object removal in the presence of the rat were made to examine the control exerted by the objects or by non-visual intramaze cues on place field location, respectively. Object rotations resulted in equivalent field rotation for all cells in control rats. In contrast, a fraction of place fields in APC-lesioned rats did not rotate but remained stable relative to the room. Object removal produced different effects in APC-lesioned and control rats. In control rats, most place fields remained stable relative to the previous object rotation session, indicating that they were anchored to olfactory and/or idiothetic cues. In APC-lesioned rats, a majority of place fields shifted back to their initial, standard location, thus suggesting that they relied on uncontrolled background cues to maintain place field stability. These results provide strong evidence that the hippocampus and the APC cooperate in the formation of spatial memory and suggest that the APC is involved in elaboration of a hippocampal map based on proximal landmarks.[Abstract] [Full Text] [Related] [New Search]