These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel approach to quantify immobilized-enzyme distributions.
    Author: van Roon JL, Groenendijk E, Kieft H, Schroën CG, Tramper J, Beeftink HH.
    Journal: Biotechnol Bioeng; 2005 Mar 20; 89(6):660-9. PubMed ID: 15674826.
    Abstract:
    The quantitative intraparticle enzyme distribution of Assemblase, an industrially employed polydisperse immobilized penicillin-G acylase, was measured. Because of strong autofluorescence of the carrier, the generally applied technique of confocal scanning microscopy could not be used; light microscopy was our method of choice. To do so, Assemblase particles of various sizes were sectioned, labeled with antibodies specifically against the enzyme, and analyzed light microscopically. Image analysis software was developed and used to determine the intraparticle enzyme distribution, which was found to be heterogeneous, with most enzyme located in the outer regions of the particles. Larger particles showed steeper gradients than smaller ones. A mathematical representation of the intraparticle profiles, based on in-stationary enzyme diffusion into the particles, was validated successfully for a broad range of particle sizes using data for volume-averaged particle size and enzyme loading. The enzyme gradients determined in this work will be used as input for a physical model that quantitatively describes the complex behavior of Assemblase. Such a physical model will lead to identification of the current bottlenecks in Assemblase and can serve as a starting point for the design of improved biocatalysts that also may be based on intelligent use of enzyme gradients.
    [Abstract] [Full Text] [Related] [New Search]