These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of a distal STAT5-binding DNA region that may mediate growth hormone regulation of insulin-like growth factor-I gene expression.
    Author: Wang Y, Jiang H.
    Journal: J Biol Chem; 2005 Mar 25; 280(12):10955-63. PubMed ID: 15677453.
    Abstract:
    Growth hormone (GH) regulates insulin-like growth factor-I (IGF-I) gene expression through signal transducer and activator of transcription 5b (STAT5b) and STAT5a. The objective of this study was to identify the cis-regulatory DNA region involved in this process. By cotransfection analyses of shotgun DNA fragments of a bacterial artificial chromosome sequence containing the entire human IGF-I gene and a large 5'-flanking region, a approximately 700-bp DNA region approximately 75 kb 5' to the IGF-I gene was found to have the ability to enhance gene expression from both heterologous and homologous promoters in the presence of constitutively active STAT5a or STAT5b. This 700-bp DNA region contains two closely located consensus STAT5-binding sites, and its sequence appears to be evolutionarily conserved. Electrophoretic mobility shift assays verified the ability of the two putative STAT5-binding sites to bind to STAT5a and STAT5b. Cotransfection analyses confirmed that both STAT5-binding sites were necessary for the 700-bp DNA region to mediate STAT5a or STAT5b activation of gene transcription. Chromatin immunoprecipitation assays demonstrated that the chromosomal region containing these two STAT5-binding sites was bound by constitutively active STAT5b protein in HepG2 cells and that the binding was accompanied by increased expression of IGF-I mRNA. In reconstituted GH-responsive cells, this 700-bp DNA region was able to mediate GH-induced STAT5a or STAT5b activation of gene expression. These results together suggest that this STAT5-binding site-containing distal 5'-flanking region of IGF-I gene may be an enhancer mediating GH-induced STAT5 activation of IGF-I gene transcription.
    [Abstract] [Full Text] [Related] [New Search]