These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular simulation studies of a selenium-containing scFv catalytic antibody that mimics glutathione peroxidase. Author: Zhang Y, Li ZS, Sun M, Zheng QC, Sun CC. Journal: Biochim Biophys Acta; 2005 Feb 14; 1747(1):27-34. PubMed ID: 15680236. Abstract: GPX is a mammalian antioxidant selenoenzyme which protects biomembranes and other cellular components from oxidative damage by catalyzing the reduction of a variety of hydroperoxides (ROOH), using Glutathione (GSH) as the reducing substrate. The single-chain Fv fragment of the monoclonal antibody 2F3 (scFv2F3) can be converted into the selenium-containing Se-scFv2F3 by chemical modification of the serine. The new selenium-containing catalytic antibody Se-scFv2F3 acts as a glutathione peroxidase (GPX) mimic with high catalytic efficiency. In order to investigate which residue of scFv2F3 is converted into selenocysteine and to describe the proper reaction site of GSH to Se-scFv2F3, a three-dimensional structure of scFv2F3 is built by means of homology modeling. The 3D model is assessed by molecular dynamics (MD) simulation to determine its stability and by comparison with those of known protein structures. After the serine in the scFv2F3 is modified to selenocysteine, a catalytic antibody (abzyme) is obtained. From geometrical considerations, the solvent-accessible surface of the protein is examined. The computer-aided docking and energy minimization (EM) calculations of the abzyme-GSH complex are then carried out to explore the possible active site of the glutathione peroxidase mimic Se-scFv2F3. The structural information from the theoretically modeled complex can help us to further understand the catalytic mechanism of GPX.[Abstract] [Full Text] [Related] [New Search]