These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of prosurvival signaling in fibroblasts by a protein kinase inhibitor protects against fibrotic tissue injury.
    Author: Vittal R, Horowitz JC, Moore BB, Zhang H, Martinez FJ, Toews GB, Standiford TJ, Thannickal VJ.
    Journal: Am J Pathol; 2005 Feb; 166(2):367-75. PubMed ID: 15681821.
    Abstract:
    Progressive fibrotic diseases involving diverse organ systems are associated with the persistence of fibroblasts/myofibroblasts in injured tissues. Activation of focal adhesion kinase (FAK) and protein kinase B (PKB/Akt) by transforming growth factor-beta1 mediate stable induction of myofibroblast differentiation and survival. In this report, we demonstrate that transforming growth factor-beta1-induced activation of both PKB/Akt and FAK are dose dependently inhibited by the protein kinase inhibitor, AG1879, in cultured human lung fibroblasts. In a murine model of intratracheal bleomycin-induced lung fibrosis, regions of active fibrogenesis demonstrate elevated expression of PKB/Akt and FAK phosphorylation in vivo, effects that are attenuated in mice receiving daily intraperitoneal injections of AG1879 (bleomycin-AG1879) versus a chemically inactive analog (bleomycin-control). PKB/Akt and FAK phosphorylation are elevated in fibroblasts isolated from lungs of bleomycin-injured mice, effects that are inhibited in bleomycin-AG1879 mice. Accumulation of alpha-smooth muscle actin-expressing myofibroblasts is markedly reduced in lungs of bleomycin-AG1879 mice. The numbers of recruited inflammatory cells were not significantly different between these groups. Bleomycin-AG1879 mice are protected from lung fibrosis as evidenced by histopathology, trichrome staining, and biochemical analysis for collagen. Thus, targeting of prosurvival signaling pathways in fibroblasts/myofibroblasts may provide a novel and effective strategy for anti-fibrotic therapy of treatment-unresponsive fibrotic disorders.
    [Abstract] [Full Text] [Related] [New Search]