These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Proton MRS in acute traumatic brain injury: role for glutamate/glutamine and choline for outcome prediction.
    Author: Shutter L, Tong KA, Holshouser BA.
    Journal: J Neurotrauma; 2004 Dec; 21(12):1693-705. PubMed ID: 15684761.
    Abstract:
    Proton magnetic resonance spectroscopy (MRS) is being used to evaluate individuals with acute traumatic brain injury and several studies have shown that changes in certain brain metabolites (N-acetylaspartate, choline) are associated with poor neurologic outcomes. The majority of previous MRS studies have been obtained relatively late after injury and none have examined the role of glutamate/ glutamine (Glx). We conducted a prospective MRS study of 42 severely injured adults to measure quantitative metabolite changes early (7 days) after injury in normal appearing brain. We used these findings to predict long-term neurologic outcome and to determine if MRS data alone or in combination with clinical outcome variables provided better prediction of long-term outcomes. We found that glutamate/glutamine (Glx) and choline (Cho) were significantly elevated in occipital gray and parietal white matter early after injury in patients with poor long-term (6-12-month) outcomes. Glx and Cho ratios predicted long-term outcome with 94% accuracy and when combined with the motor Glasgow Coma Scale score provided the highest predictive accuracy (97%). Somatosensory evoked potentials were not as accurate as MRS data in predicting outcome. Elevated Glx and Cho are more sensitive indicators of injury and predictors of poor outcome when spectroscopy is done early after injury. This may be a reflection of early excitotoxic injury (i.e., elevated Glx) and of injury associated with membrane disruption (i.e., increased Cho) secondary to diffuse axonal injury.
    [Abstract] [Full Text] [Related] [New Search]