These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: GATA1, cytidine deaminase, and the high cure rate of Down syndrome children with acute megakaryocytic leukemia.
    Author: Ge Y, Stout ML, Tatman DA, Jensen TL, Buck S, Thomas RL, Ravindranath Y, Matherly LH, Taub JW.
    Journal: J Natl Cancer Inst; 2005 Feb 02; 97(3):226-31. PubMed ID: 15687366.
    Abstract:
    Down syndrome children with acute megakaryocytic leukemia (AMkL) have higher cure rates than non-Down syndrome acute myeloid leukemia (AML) patients treated with cytosine arabinoside (ara-C). Megakaryoblasts from Down syndrome AML patients are more sensitive in vitro to ara-C than cells from non-Down syndrome AML patients. Somatic mutations in the GATA1 transcription factor have been detected exclusively and almost uniformly in Down syndrome AMkL patients, suggesting a potential linkage to the chemotherapy sensitivity of Down syndrome megakaryoblasts. Stable transfection of wild-type GATA1 cDNA into the Down syndrome AMkL cell line CMK resulted in decreased (8- to 17-fold) ara-C sensitivity and a threefold-lower generation of the active ara-C metabolite ara-CTP compared with that for mock-transfected CMK cells. High intracellular levels of uridine arabinoside (ara-U) (an inactive ara-C catabolite generated by cytidine deaminase) and cytidine deaminase transcripts were detected in GATA1-transfected CMK sublines, whereas no ara-U was detected in mock-transfected cells. Cytidine deaminase transcripts were a median 5.1-fold (P = .002) lower in Down syndrome megakaryoblasts (n = 16) than in blast cells from non-Down syndrome patients (n = 56). These results suggest that GATA1 transcriptionally upregulates cytidine deaminase and that the presence or absence of GATA1 mutations in AML blasts likely confers differences in ara-C sensitivities due to effects on cytidine deaminase gene expression, which, in turn, contributes to the high cure rate of Down syndrome AMkL patients.
    [Abstract] [Full Text] [Related] [New Search]