These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contractile properties of feline genioglossus, sternohyoid, and sternothyroid muscles.
    Author: van Lunteren E, Manubay P.
    Journal: J Appl Physiol (1985); 1992 Mar; 72(3):1010-5. PubMed ID: 1568954.
    Abstract:
    Despite a wealth of information about the respiratory behavior of pharyngeal dilator muscles such as the genioglossus, sternohyoid, and sternothyroid muscles, little is known about their contractile and endurance properties. Strips of these muscles (as well as of the diaphragm) were surgically removed from anesthetized cats and studied in vitro at 37 degrees C. The isometric contraction times of the muscles were 38 +/- 1, 31 +/- 1, 28 +/- 2, and 35 +/- 1 ms for genioglossus, sternothyroid, sternohyoid, and diaphragm, respectively. Contraction times were significantly longer for the genioglossus than for the sternohyoid and sternothyroid muscles and significantly longer for the diaphragm than for the sternohyoid muscle. Twitch-to-tetanic ratios were largest for the diaphragm and lowest for the sternohyoid muscle, and the force-frequency relationship of the sternohyoid was most rightward positioned and that of the diaphragm was most leftward positioned. During repetitive stimulation, the decrement in force was greatest for the diaphragm and least for the genioglossus muscle, with the force loss of the two hyoid muscles being intermediate in magnitude. The Burke fatigue index was significantly greater for the genioglossus than for the diaphragm, despite similar tension-time indexes during repetitive stimulation. These data indicate heterogeneity among pharyngeal dilator muscles in their contractile and endurance properties, that certain pharyngeal dilator muscle properties differ from diaphragmatic properties, and that pharyngeal muscles have relatively fast contractile kinetics yet reasonable endurance characteristics.
    [Abstract] [Full Text] [Related] [New Search]