These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanisms of control of alae nasi muscle activity.
    Author: Mezzanotte WS, Tangel DJ, White DP.
    Journal: J Appl Physiol (1985); 1992 Mar; 72(3):925-33. PubMed ID: 1568988.
    Abstract:
    Human upper airway dilator muscles are clearly influenced by chemical stimuli such as hypoxia and hypercapnia. Whether in humans there are upper airway receptors capable of modifying the activity of such muscles is unclear. We studied alae nasi electromyography (EMG) in normal men in an attempt to determine 1) whether increasing negative intraluminal pressure influences the activity of the alae nasi muscle, 2) whether nasal airway feedback mechanisms modify the activity of this muscle, and 3) if so, whether these receptor mechanisms are responding to mucosal temperature/pressure changes or to airway deformation. Alae nasi EMG was recorded in 10 normal men under the following conditions: 1) nasal breathing (all potential nasal receptors exposed), 2) oral breathing (nasal receptors not exposed), 3) nasal breathing with splints (airway deformation prevented), and 4) nasal breathing after nasal anesthesia (mucosal receptors anesthetized). In addition, in a separate group, the combined effects of anesthesia and nasal splints were assessed. Under each condition, EMG activity was monitored during basal breathing, progressive hypercapnia, and inspiratory resistive loading. Under all four conditions, both load and hypercapnia produced a significant increase in alae nasi EMG, with hypercapnia producing a similar increment in EMG regardless of nasal receptor exposure. On the other hand, loading produced greater increments in EMG during nasal than during oral breathing, with combined anesthesia plus splinting producing a load response similar to that observed during oral respiration. These observations suggest that nasal airway receptors have little effect on the alae nasi response to hypercapnia but appear to mediate the alae nasi response to loading or negative airway pressure.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]