These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and characterization of EADAM: a selective radioligand for mapping the brain serotonin transporters by positron emission tomography.
    Author: Jarkas N, McConathy J, Votaw JR, Voll RJ, Malveaux E, Camp VM, Williams L, Goodman RR, Kilts CD, Goodman MM.
    Journal: Nucl Med Biol; 2005 Jan; 32(1):75-86. PubMed ID: 15691664.
    Abstract:
    [11C]N,N-Dimethyl-2-(2'-amino-4'-ethylphenylthio)benzylamine ([11C]EADAM) was synthesized in the development of a serotonin transporter (SERT) imaging ligand for positron emission tomography (PET). The methods of ligand synthesis, results of in vitro characterization, 11C labeling and in vivo micro-PET imaging studies of [11C]EADAM in cynomolgus monkey brain are described. 11C was introduced into N,N-dimethyl-2-(2'-amino-4'-ethylphenylthio)benzylamine (5) by alkylation of N-methyl-2-(2'-amino-4'-ethylphenylthio)benzylamine (10) in 32% radiochemical yield (end of bombardment [EOB], decay-corrected from [11C]methyl iodide). Competition binding assays in cells stably expressing the transfected human dopamine transporter (DAT), SERT and norepinephrine transporter (NET) labeled with [3H]WIN 35428 or [(125)I]RTI-55, [3H]citalopram and [3H]nisoxetine, respectively, indicated the following order of SERT affinity: ADAM>EADAM>>fluvoxamine. The affinity of EADAM for DAT and NET was 500- and >1000-fold lower, respectively, than for SERT. Micro-PET brain imaging studies in a cynomolgus monkey demonstrated high [11C]EADAM uptake in the striatum, thalamus and brainstem. [11C]EADAM uptake in these brain regions peaked in less than 60 min following administration of [11C]EADAM. The tissue-to-cerebellum ratios of the striatum, thalamus and brainstem were 1.67, 1.71 and 1.63, respectively, at 120 min postinjection of [11C]EADAM. Analysis of monkey arterial plasma samples using high-pressure liquid chromatography determined there was no detectable formation of lipophilic radiolabeled metabolites capable of entering the brain. In a displacement experiment with citalopram in a cynomolgus monkey, radioactivity in the striatum, thalamus and brainstem was displaced 20-60 min after administration of citalopram. In a blocking experiment with citalopram in a cynomolgus monkey, radioactivity in the striatum, thalamus and brainstem was significantly reduced. These results support the candidacy of [11C]EADAM as a radioligand for visualizing brain SERT using PET.
    [Abstract] [Full Text] [Related] [New Search]