These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Physical characteristics of small intestinal submucosa scaffolds are location-dependent.
    Author: Raghavan D, Kropp BP, Lin HK, Zhang Y, Cowan R, Madihally SV.
    Journal: J Biomed Mater Res A; 2005 Apr 01; 73(1):90-6. PubMed ID: 15693016.
    Abstract:
    Using biodegradable scaffolds as an alternative to engineer new tissues has become an attractive candidate in various transplantation protocols. In particular, small intestinal submucosa (SIS), a dense connective matrix harvested from the small intestine, has gained attention due to a number of favorable properties. However, use of SIS is constrained by obtaining reliable, reproducible products in large-scale preparations that affect the regenerative process. To better understand the heterogeneous nature of SIS, this study focused on evaluating the location-dependent alterations in the physical characteristics of the matrices harvested from distal and proximal ends and processed in-house (referred as hand-made). Additionally, results were compared with a commercially available machine-made Cook SIS. Tensile properties during monotonic loading and cyclical loading were compared in wet conditions. Furthermore, permeability of these membranes to urea was analyzed using a custom-built chamber, and the microarchitecture was analyzed via scanning electron microscopy. These results showed that distal samples were more elastic and less permeable to urea relative to other samples. However, permeability in each sample was direction-dependent, that is, mucosal to serosal direction was less permeable compared to sorasal to mucosal direction in all the samples. Cook SIS was more susceptible to cyclical loading and had a shorter range of load carrying capacity. In summary, results show that physical characteristics of SIS are location-dependent.
    [Abstract] [Full Text] [Related] [New Search]