These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Author: Engel D, Jonas P. Journal: Neuron; 2005 Feb 03; 45(3):405-17. PubMed ID: 15694327. Abstract: Action potentials in central neurons are initiated near the axon initial segment, propagate into the axon, and finally invade the presynaptic terminals, where they trigger transmitter release. Voltage-gated Na(+) channels are key determinants of excitability, but Na(+) channel density and properties in axons and presynaptic terminals of cortical neurons have not been examined yet. In hippocampal mossy fiber boutons, which emerge from parent axons en passant, Na(+) channels are very abundant, with an estimated number of approximately 2000 channels per bouton. Presynaptic Na(+) channels show faster inactivation kinetics than somatic channels, suggesting differences between subcellular compartments of the same cell. Computational analysis of action potential propagation in axon-multibouton structures reveals that Na(+) channels in boutons preferentially amplify the presynaptic action potential and enhance Ca(2+) inflow, whereas Na(+) channels in axons control the reliability and speed of propagation. Thus, presynaptic and axonal Na(+) channels contribute differentially to mossy fiber synaptic transmission.[Abstract] [Full Text] [Related] [New Search]